Category Archives: Top 10 Wind Turbine in USA

MARS Floating Wind Turbines | Horizontal Axis Wind Turbine | Lowest Cost Wind Energy Solution | How Floating Wind Turbine Works

01-super efficient floating wind turbines-how magenn air rotor system works-MARS-horizontal axis wind turbine-lower cost wind energy solution-Magnus effect

The Magenn Power Air Rotor System (MARS) is a patented high altitude lighter-than-air tethered device that rotates about a horizontal axis in response to wind, efficiently generating clean renewable electrical energy at a lower cost than all competing systems. This electrical energy is transferred down the tether to a transformer at a ground station and then transferred to the electricity power grid. Helium (an inert non-reactive lighter than air gas) sustains the Air Rotor which ascends to an altitude for best winds and its rotation also causes the Magnus effect. This provides additional lift, keeps the device stabilized, keeps it positioned within a very controlled and restricted location, and causes it to pull up overhead rather than drift downwind on its tether.

   01-MARS Prototype-how magenn air rotor system works-MARS-horizontal axis wind turbine-lower cost wind energy solution-Magnus effect

All competing conventional wind generators use bladed two-dimensional disk-like structures and rigid towers. The Magenn Power Air Rotor system is a closed three-dimensional structure (cylinder). It offers high torque, low starting speeds, and superior overall efficiency thanks to its ability to deploy higher.

01-how magenn air rotor system works-MARS-horizontal axis wind turbine-lower cost wind energy solution-Magnus effect

The closed structure allows Magenn Power to produce wind rotors from very small to very large sizes at a fraction of the cost of current wind generators.

01-Magenn2DAnimation-conventional wind generators-MARS-Magenn power air rotor system

The distinct advantages of the Magenn Air Rotor System design are as follows:

  • Magenn Air Rotor System is less expensive per unit of actual electrical energy output than competing wind power systems.
  • Magenn Power Air Rotor System will deliver time-averaged output much closer to its rated capacity than the capacity factor typical with conventional designs. Magenn efficiency will be 25 to 60 percent. This is hugely important, since doubling capacity factor cuts the cost of each delivered watt by half.
  • Wind farms can be placed closer to demand centers, reducing transmission line costs and transmission line loses.
  • Magenn Air Rotors are operable between 2 meter/sec and in excess of 28 meters/sec.
  • Magenn Air Rotors can be raised to higher altitudes, thus capitalizing on higher winds aloft. Altitudes from 400-ft to 1,000-ft above ground level are possible, without having to build an expensive tower, or use a crane to perform maintenance.
  • Magenn Air Rotors are mobile and can be easily moved to different locations to correspond to changing wind patterns. Mobility is also useful in emergency deployment and disaster relief situations.

01-marsMiniGrid-installation-assembly-how magenn air rotor system works-MARS-horizontal axis wind turbine-lower cost wind energy solution-Magnus effect

Floating Wind Turbines the Wave of the Future | Promises Clean Power

01-floating wind turbine-from strong sea breezes-offshore wind turbine

Four hundred huge offshore wind turbines are providing onshore customers with enough electricity to power several hundred thousand homes, and nobody standing onshore can see them. The trick? The wind turbines are floating on platforms a hundred miles out to sea, where the winds are strong and steady.

Today’s offshore wind turbines usually stand on towers driven deep into the ocean floor. But that arrangement works only in water depths of about 15 meters or less. Proposed installations are therefore typically close enough to shore to arouse strong public opposition.

Their design calls for a tension leg platform (TLP), a system in which long steel cables, or "tethers," connect the corners of the platform to a concrete-block or other mooring system on the ocean floor. The platform and turbine are thus supported not by an expensive tower but by buoyancy.

According to their analyses, the floater-mounted turbines could work in water depths ranging from 30 to 200 meters. In the Northeast, for example, they could be 50 to 150 kilometers from shore. And the turbine atop each platform could be big — an economic advantage in the wind-farm business.

Ocean assembly of the floating turbines would be prohibitively expensive because of their size: the wind tower is fully 90 meters tall, the rotors about 140 meters in diameter. So the researchers designed them to be assembled onshore — probably at a shipyard — and towed out to sea by a tugboat. To keep each platform stable, cylinders inside it are ballasted with concrete and water. Once on site, the platform is hooked to previously installed tethers. Water is pumped out of the cylinders until the entire assembly lifts up in the water, pulling the tethers taut.

01-floating wind turbine-from strong sea breezes-offshore wind turbine-structural platforms in sea-extreme wave forecasting-build by corrosion resistance materials

The tethers allow the floating platforms to move from side to side but not up and down. According to computer simulations, in hurricane conditions the floating platforms — each about 30 meters in diameter — would shift by one to two meters, and the bottom of the turbine blades would remain well above the peak of even the highest wave. The researchers are hoping to reduce the sideways motion further by installing specially designed dampers similar to those used to steady the sway of skyscrapers during high winds and earthquakes.