Skip to content

Introduction | Structure of Metals and Alloys | Crystalline materials

INTRODUCTION TO STRUCTURE OF METALS AND ALLOYS

Crystalline Materials:

  • A crystalline material is one in which the atoms are situated in a repeating (or) periodic array over large atomic distances.

01-space-lattice-unit-cell-representation-structure-of-metals-and-alloys

 

Non Crystalline Materials:

  • Materials that do not crystallize are called non-crystalline (or) Amorphous materials

Space Lattice | Structure of Metals and Alloys

  • Lattice is the regular geometrical arrangement of points in crystal space.

01-lattice-crystal-structure.jpg

 

  • The atoms arrange themselves in distinct pattern in space is called a Space Lattice.
  • Atoms in crystalline materials are arranged in a regular 3 – Dimensional repeating pattern known as Lattice Structure.
  • They are divided by network of lines in to equal volumes, the points of intersection are known as Lattice Points.

Unit Cell | Structure of Metals and Alloys

01-unit-cell.jpg

  • It is the smallest portion of the lattice which repeated in all directions.
  • 3D visualization of 14 Space Lattices are known as Bravai’s Space Lattice.
  • If a unit cell contains lattice points only at it’s corners, then it is called Primitive Unit Cell (or) Simple Unit Cell.
  • Three edge length x,y, & z and three interaxial angles α, β, & γ are termed as Lattice Parameters.

Crystal System For The Structure of Metals and Alloys

  • It is a scheme by which crystal structures are classified according to unit cell geometry.

Types of Crystal Systems:

  • Cubic
  • Tetragonal
  • Hexagonal
  • Orthorhombic
  • Rhombohedral
  • Monoclinic
  • Triclinic

Crystal Systems

0I-hcp-structure-hexagonal-close-packed.jpg

Simple Crystal Structure:

Body Centered Cubic Structure (BCC)

  • Unit cell contains 2 atoms
  • Lattice Constant a= 4r / √3, where r is atomic radius
  • Atomic packing factor APF = 0.68
  • Metals are Vanadium, Molybdenum, Titanium, Tungsten

0I-bcc-structure-body-center-cubic.jpg
02bccstructurebodycentercubic.jpg

03bccstructurebodycentercubic.jpg

 

Face Centered Cubic (FCC)

  • Unit cell contains 4 atoms
  • Lattice Constant a= 4r / √2, where r is atomic radius
  • Atomic packing factor APF = 0.72
  • FCC structures can be plastic deformed at severe rates
  • Metals are Copper, Aluminum, Phosphorous, Nickel, Cobalt etc

02fccstructurefacecentercubicunitcell.jpg

01-fcc-structure-face-center-cubic-unit-cellHexagonal Closed Packed Structure (HCP)

  • Unit cell contains 3 atoms
  • Axial ratio c/a, where ‘c’ is Distance between base planes, ‘a’ is Width of Hexagon
  • Axial Ratio varies from 1.58 for Beryllium to 1.88 for Cadmium (Therefore  a=2.9787, c=5.617)
  • Atomic packing factor APF = 0.74
  • Metals are Zinc, Cadmium, Beryllium, Magnesium etc

0IhcpstructureHexagonalclosepackedunitcell.jpg

0I-hcp-structure-hexagonal-close-packed.jpg

0I-hcp-ball-structure-Hexagonal-close-packed-unit-cell.jpg

 

Crystallographic Planes and Directions

The Layers of atoms in the planes along which atoms are arranged is known as “Atomic” (or) “Crystallographic planes”.

Miller Indices:

Miller Indices is a system of notation that denotes the orientation of the faces of a crystal and the planes and directions of atoms within that crystal.

Miller Indices for Planes:

1. The (110) surface

02-miller-indices-crystalographic-planes.jpg

 

Intercepts :   a , a , ∞

Fractional intercepts :   1 , 1 , ∞

Miller Indices :   (110)

 

2. The (111) surface

03-miller-indices-crystalo-graphic-planes.jpg

 

Intercepts :   a , a , a

Fractional intercepts :   1 , 1 , 1

Miller Indices :   (111)

The (100), (110) and (111) surfaces considered above are the so-called low index surfaces of a cubic crystal system.

 

3. The (210) surface

04-miller-indices-crystalographic-planes.jpg

 

Intercepts :   ½ a , a , ∞

Fractional intercepts :   ½ , 1 , ∞

Miller Indices :   (210)

 

 

1 thought on “Introduction | Structure of Metals and Alloys | Crystalline materials”

  1. Pingback: Opto Electronics | Fiber Optics Technology | Opto Electronic Sensors | 6 Types Of Optoelectronics And Its Introduction: What No One Is Talking About

Leave a Reply

Share to...