Material Handling Design | Design Of Cranes | Design Of Crane Hook | Design Of Crane Girders | Design Of Crane Columns

Crane Parts Overview and Design of Crane:

A crane is a mechanical lifting device equipped with chains, wire ropes etc. In this article we will see the design of crane parts overview and the essential parts of the crane designs.

The Design of crane parameters are:

  1. Maximum Load
  2. Span of the crane
  3. Height from Floor to Gantry Rail Level
  4. Class of work of the crane
  5. Headroom
  6. End clearance
  7. Operating Speeds Under Loaded Condition

Design of Crane Parameter: Maximum Load:

The maximum load in tons is the customer’s requirement and must be specified clearly. The design of almost all the components of the crane is influenced by this parameter. In some cases it is necessary to arrange for a second hoisting machinery called the auxiliary hoist, to lift a much lighter load. If the load at which the crane is operated in general is considerably less than the maximum load, an auxiliary hoist may be used.

Cranes used for power plant maintenance is an example of such cases where auxiliary hoist may be fitted. For an entirely different reason auxiliary hoist may be fitted with cranes used in foundries, steel casting shop handling ladles containing molten metal. In these industries the main hoist of the crane is used for hoisting the ladle containing the molten metal, while the auxiliary hoist is used to lift the ladle very slowly to pour the liquid in the mould.

An auxiliary hoist machinery consists of a completely separate hoist mechanism built on a second crab which may run either above or below the crab of the main hoist. The auxiliary hoist is generally of much less capacity than the main hoist.

Design of Crane: Span of the Crane:

The distance between the centre to centre of the gantry rails over which the wheels of the bridge run. The section of the gantry rails should also be specified in the design of the wheels of the bridge.

Design of Crane: Height from Floor to Gantry Rail Level:

To arrange for the correct height of lift this parameter should be specified. If the crane is required to lift out of the pits or from below the floor level, particulars should be specified.

Class of Work of the crane:

For the purpose of the design of their frames, every crane and hoist are classified with respect to the frequency of application, variation of the magnitude of the load and the effect of impact.

Cranes are divided into four classes.

Light duty and Heavy duty cranes are discerned by the working period, effective load and dynamic effect. It should be remembered that this classification is applicable to the entire crane and the structure.

The working period is short if the crane is operated for less than 500 hours per year. The effective load is high if the crane is used to lift loads greater than two third of its safe working load on more than one thousand occasions per year.

The dynamic effect may be considered low if the speed of travelling of both crab and bridge or hoist are each less than 100 m per minute. If the speed of operation is higher than this the dynamic effect is high.

Design of Crane: Headroom:

The clear height available from the gantry rail level to the lowest overhead obstruction is called the head room. This should be specified by the customer. The height of the hoisting machinery over the crab should not foul with the structural obstruction.

Design of Crane: End Clearance:

The distance from the centre of gantry rail horizontally to the nearest obstruction on either side is called the end clearance.

Operating speeds under Loaded Condition:

The operating speeds in m/min for the main hoist, auxiliary hoist, cross traverse and long travel should usually be specified by the customer. When there are no special requirements, the speeds will follow the usual standard practice for the size of crane under consideration.

Apart from the above mentioned important parameters the customer should also specify the following particulars:

  • Electrical details like the type (AC or DC),
  • Voltage,
  • Number of phase,
  • Frequency,
  • Electrical control,

Whether the control is to be in operator’s cabin for hand operation, or whether from floor by means of pendant.


Discover more from BlogMech

Subscribe to get the latest posts to your email.

Leave a Reply

Discover more from BlogMech

Subscribe now to keep reading and get access to the full archive.

Continue reading

Discover more from BlogMech

Subscribe now to keep reading and get access to the full archive.

Continue reading