Jetpack | Personal Flying Jetpack Machine | Jetpack Machines

silver-jetpack-martin aviation company-himmelsturner       

This Jetpack consists of a built-in gasoline engine driving twin ducted fans which produce sufficient thrust to lift the aircraft and a pilot in vertical takeoff and landing, enabling sustained flight.

01-martin-aircraft-jetpack-commercial jetpack manufacturers-personal flying  machine jetpack- jetpack machines

Jetpack Development:

Since the beginning of time man has dreamed of personal flight – the ability to fly as free as birds and escape gravity’s pull.

From the 1920s this dream has been refined in film, books and television, with the jetpack portrayed as the ultimate tool for the freedom of flight.

In the 1950s the first serious attempts at building a jetpack produced the Bell Rocket Belt. But the Bell Rocket Belt has some limitations. It is powered by an expensive and hazardous fuel, needs a light weight pilot, is incredibly hard to fly, and, after 50 years of development can only fly for 30 seconds. It is not the practical jetpack the world has been waiting for.

In 1981, as a New Zealand student, started his quest to a build a jetpack that overcame the limitations of the Rocket Belt. With enthusiasm and commitment Glenn has been able to capture the support of a large network of experts who shared his dream.

01-jetpack-30 minutes of flight time-gasoline engine-two ducted fans

The rest is history. On 29 July 2008, the world’s first practical jetpack, was revealed to the world and became an international media sensation.

Jetpack Technology:

01-carbon fibre composite jetpack-VTOL-vertical take off and landing aircraft- fan jet technology-martin-aircraft-jetpack-commercial jetpack manufacturers-personal flying  machine jetpack

The Jetpack is constructed from carbon fiber composite, has a dry weight of 250 lbs (excluding safety equipment) and measures 5 ft high x 5.5 ft wide x 5 ft long. It’s driven by a 2.0 L V4 2 stroke engine rated at 200 hp (150 kw), can reach 8000 ft (estimated) and each of the two 1.7 ft wide rotors is made from carbon / Kevlar composite.

There is always risk associated with flying so the Aircraft has been careful to equip the pack with redundant systems that will take over in the event that the main system goes down. If a crash-landing is required, a pilot-operated toggle will rapidly fire a small amount of propellant deploying a ballistic parachute (similar to a car airbag) which will allow the pilot and jetpack to descend together. It also has an impact-absorbing carriage, patented fan jet technology and 1000 hours engine TBO (Time Between Overhaul). Small vertical take-off and landing aircraft (VTOL) are not subject to the same limitations as other helicopters and fixed wing aircrafts but Aircraft have built it to comply with ultra light regulations and therefore suggest it as at least as safe to operate, and claim it is the safest of all jetpacks yet built.

01-jetpack-a personal aircraft

The Jetpack achieves with 30 minutes of flight time and is fueled by regular premium gasoline.

Safety Development:

Roll cage:

01-steel roll cage

A roll cage is a specially constructed frame built in (or sometimes around) the cab of a vehicle to protect its occupants from being injured in an accident, particularly in the event of a roll-over. A roll bar is a single bar behind the driver that provides moderate roll-over protection. Due to the lack of a protective top, some modern convertibles utilize a strong windscreen frame acting as a roll bar. Also, a roll hoop may be placed behind both headrests, which is essentially a roll bar spanning the width of a passenger’s shoulders.

Factor Of Safety:

The Jetpack has a number of mechanical things moving fast….a drive train, Fan jets. All these are designed with far higher "factors of safety" (FOS) than is normal for an aircraft. This was done because of the newness of the design and to cover for unforeseen factors. For instance the Fan blades have a FOS of 5, at the hub and over 10 at the blade.

Parachute:

01-parachute-in aircrafts-jetpacks

Production versions of the Jetpack are equipped with a Ballistic Parachute system from Ballistic Recovery Systems. This enables the pilot to be saved from a catastrophic failure down to a reasonably low altitude. Ballistic parachutes can open at very low altitudes, particularly if the aircraft has some forward speed. For this reason the "flight profiles" will be calculated to have the lowest risk possible.

01-jetpack-parachute compartment-flying controls-twin turbo jets

Application:

  • Emergency response,
  • Defense and recreation, with numerous applications in each sector.

Artificial Photosynthesis | Artificial Photosynthesis To Create Clean Fuel | Artificial Photosynthesis Solar To Fuel | Artificial Photosynthesis Process

Artificial photosynthesis is one of the newer ways researchers are exploring to capture the energy of sunlight reaching earth.

01-photosynthetic reaction-receive sunlight as photons-transfer energy to a network of pigment protein complexes    

Photosynthesis:

01-Photosynthesis-basics-operation-oxygen release-hydrogen splits

Photosynthesis is the conversion of sunlight, carbon dioxide, and water into usable fuel and it is typically discussed in relation to plants where the fuel is carbohydrates, proteins, and fats. Using only 3 percent of the sunlight that reaches the planet, plants collectively perform massive energy conversions, converting just over 1,100 billion tons of CO2 into food sources for animals every year.

Photovoltaic Technology:

This harnessing of the sun represents a virtually untapped potential for generating energy for human use at a time when efforts to commercialize photovoltaic–cell technology are underway. Using a semiconductor–based system, photovoltaic technology converts sunlight to electricity, but in an expensive and somewhat inefficient manner with notable shortcomings related to energy storage and the dynamics of weather and available sunlight.

Artificial Photosynthesis:

01-photosynthesis system-Artificial Photosynthesis-Artificial Photosynthesis Solar energy to produce hydrogen directly used in fuel cell

Two things occur as plants convert sunlight into energy:

  • Sunlight is harvested using chlorophyll and a collection of proteins and enzymes, and
  • Water molecules are split into hydrogen, electrons, and oxygen.

These electrons and oxygen then turn the CO2 into carbohydrates, after which oxygen is expelled.

Rather than release only oxygen at the end of this reaction, an artificial process designed to produce energy for human use will need to release liquid hydrogen or methanol, which will in turn be used as liquid fuel or channeled into a fuel cell. The processes of producing hydrogen and capturing sunlight are not a problem. The challenge lies in developing a catalyst to split the water molecules and get the electrons that start the chemical process  to produce the hydrogen.

There are a number of promising catalysts available, that, once perfected, could have a profound impact on how we address the energy supply challenge:

  • Manganese directly mimics the biology found in plants.
  • Titanium Dioxide is used in dye-sensitized cell.
  • Cobalt Oxide is very abundant, stable and efficient as a catalyst

Artificial Photosynthesis Operation:

01-artificial Photosynthesis-arrays of microwave coated catalysts-split water to make hydrogen or liquid hydrocarbon fuels

Under the fuel through artificial photosynthesis scenario, nano tubes embedded within a membrane would act like green leaves, using incident solar radiation (H³) to split water molecules (H2O), freeing up electrons and oxygen (O2) that then react with carbon dioxide (CO2) to produce a fuel, shown here as methanol (CH3OH). The result is a renewable green energy source that also helps scrub the atmosphere of excessive carbon dioxide from the burning of fossil fuels.

01-artificial photosynthesis solar collector to energy-concentrated solar radiation- convert photosynthesis to Hydrogen and oxygen

History:

Plants use organic compounds that need to be continuously renewed. Researchers are looking for inorganic compounds that catalyze the needed reactions and are both efficient and widely available.

The research has been significantly boosted by the application of nano technology. It’s a good example of the step wise progress in the scientific world.

Studies earlier in the decade showed that crystals iridium efficiently drove the reduction of CO2, but iridium is extremely rare so technology that required its use would be expensive and could never be used on a large scale.

Cobalt crystals were tried. They worked, and cobalt is widely available, but the original formulations weren’t at all efficient.

Things changed with the introduction of nano technology.

The main point is that this unique approach increasing appears to be feasible. It has the advantage of harnessing solar energy in a form that can be stored and used with greater efficiency than batteries and it is at least carbon neutral.