Fuel Cell Technology

The fuel cell vehicle (FCV) is the nearest thing yet to an "ultimate eco-car" that offers solutions to energy and emissions issues.

01-fcc-car-fuel cell car-fuel cell technology

FCVs are powered by fuel cells, which generate electricity from hydrogen, which is not only environmentally friendly and highly energy-efficient, but can also be produced using a variety of readily available raw materials. Thanks to these characteristics, fuel cell vehicles are ideal for achieving sustainable mobility. Therefore, Toyota is striving to make this vehicle technology widely available as soon as possible.

01-fuelcell_vehicle - FCV-ultimate Eco car-Hybrid technology

  • Successful startup: -30° Celsius
  • Extended cruising range: 830km (JC08 mode) without refueling

At a steady cruising speed, the motor is powered by energy from the fuel cell. When more power is needed, for example during sudden acceleration, the battery supplements the fuel cell’s output. Conversely, at low speeds when less power is required, the vehicle runs on battery power alone. During deceleration the motor functions as an electric generator to capture braking energy, which is stored in the battery.

01-fuel cell animation-how fuel cell works



01-schematic arrangement of basic fuel cell concept-status of fuel cell technology

Ultimate Eco Car Challenge | Development of Ultimate Eco Car

01-ultimate_eco_car-developments of hybrid technology-development of hydrogen fuel-fuel cell-hybrid technology

Continuous improvement in conventional engines, including lean-burn gasoline engines, direct injection gasoline engines and common rail direct-injection diesel engines, as well as engines modified to use alternative fuels, such as compressed natural gas (CNG) or electricity (for Electric Vehicle).

Engineers may disagree about which fuel or car propulsion system is best, but they do agree that hybrid technology is the core for eco-car development.

01-ultimate_eco_car-diesel hybrid-fuel cell vehicle-alternate fuel hybrid vehicles

“Plug-in hybrid” technology brings further potential for substantial CO2 emissions reductions from vehicles. It has a higher battery capacity and is thus more fuel-efficient than the current hybrid, assisted by the power of engine. For a short-distance drive, it could be run with electricity charged during the night. Depending on how electricity is generated, the vehicle could run with much lower CO2 emissions. In order to commercialize the plug-in hybrid, there is again a need for a breakthrough in battery technology. It is necessary to develop a smaller-sized battery with higher capacity. Plug-in hybrids could contribute to reducing substantial amounts of CO2 emissions from vehicles, as well as fossil fuel use, by charging from cleaner electricity sources in the future. 

Challenges of increasing power performance

In order to improve the driving performance, its power train was completely redesigned. To increase motor output, a high-voltage power-control was adopted. Although this technology was used in industrial machines and trains, the idea of incorporating it into an automobile did not easily occur at first. First of all, the system itself would take up a substantial amount of space and secondly, there was no prior example of applying this method to a motor that switches between output and power generation at such a dizzy pace. 

Once the development of the high-voltage power circuit began, there was a mountain of problems, such as what to do about the heat generated by increasing voltage and the noise generated. To reevaluate the power train, the project team had to produce prototypes and repeat numerous tests. The prototyping stage went to seven prototypes instead of the usual three, and the total distance driven by these prototypes during testing exceeded one million kilometers.