Methods of Compacting / Powder Metallurgy

Methods of compacting are:

  1. Pressing
  2. Centrifugal Casting
  3. Slip Casting
  4. Extruding
  5. Gravity Casting
  6. Rolling
  7. Iso-static Moulding
  8. Explosive Compacting
  9. Fibre-Metal processes

Compaction of metal powders:

Compaction is crucial in powder metallurgy processing because it allows free metal powders to be formed into desired forms with sufficient strength to survive until sintering is done. Compaction is often performed without the use of heat. Loose powders are formed into the desired shape, with enough strength to survive ejection from the tools and the subsequent sintering process. In other circumstances, such as cemented carbide, hot compaction is followed by sintering. Metal powder compaction is not simply a compaction process because sintering is also involved.

Metal powder compacting or pressing is classified into two categories:

  1. Hot pressing
  2. Cold pressing

The compression of powder at high temperatures is known as “hot pressing.” It is often a dual procedure in which metal particles are crushed and sintered simultaneously. The hot-pressing process is primarily employed in producing carbide cutting tools and a few other specialized applications.

Cold pressing is a method of forming a green compact by applying pressure to a column of loose (apparent density) metal powders in a closed die. This compaction technique is the most common and accounts for most components produced by the powdered metallurgy process. Cold pressing techniques are further classified as axial pressing and isostatic pressing.

What is compacting in powder metallurgy?

Press powder into the desired form and size in dies with a hydraulic or mechanical press. Squeezing the powder into the correct form requires a lot of force. “Green compact” refers to pressed powder.

The purpose of powder compacting:

The primary goal of compaction is to create a green compact that is strong enough to survive subsequent handling operations. After that, the green compact is taken to be sintered.

Functions of powder compaction

The following are the principal purposes of metal powder compaction:

  1. To mold the powder into the required form,
  2. To impart the required final dimensions to the greatest extent feasible, consider any dimensional changes caused during sintering.
  3. To influence the desired porosity level and kind.
  4. To provide sufficient strength for future handling.

Classification of powder compaction:

The following are the several types of powder compaction methods:

  • Pressure-less compaction
    1. Sintering
    2. Slip casting
    3. Slurry casting
    4. Tape casting
    5. Vibratory compaction
  • Pressure compaction
    1. Cold Die Compaction
      1. Single-acting pressing compaction
      2. Double-acting pressing compaction
      3. Floating die pressing
    2. Iso-static pressing
    3. Powder rolling
    4. Powder extrusion
    5. Explosive compaction
  • Hot compaction

Different Methods of Compacting:

Here we are learning the different methods of powder compacting briefly.

Pressing:

The function principles of the mechanic press machines differ in how they ensure the upper punch main movement by cams, spindles, friction drives, eccentrics, knuckle-joints, or the round table principle, independent of whether cams, eccentric systems realize the die or lower punch movement, or other mechanically or hydraulically combined systems. The execution of auxiliary movements is also not decisive for a term classification. These auxiliary movements can also be based on pneumatic and hydraulic principles.

Compared to hydraulic press machines, the maximum compaction forces of mechanical powder presses are limited and placed in the range </= 5000 kN. For the requirements of wet and dry pressing techniques in the field of technical ceramics, cams, eccentrics, knuckle joints, and round table presses have been tested. In contrast, cam presses are specially used for wet pressing techniques of pourable materials. The range of compaction force of mechanical presses for technical ceramics products is 2500 kN, which is caused by the lower density of the ceramic materials. Normally, the mechanical presses’ upper, lower, and die systems do not work based on multi-divided punches.

01-powder pressing in metallurgy is a methods of compacting

Centrifugal Casting:

It is employed for compacting heavy metal powders such as tungsten carbide. The powder is twirled in a mold and packed uniformly with pressures up to 3 MPa. The uniform density is obtained from the centrifugal force acting on each powder particle.

06-centrifugal-casting-process

05-centrifugal-casting-mold-metal-parts

Slip Casting:

A green compact of metal powder may be obtained by slip casting. The slurry, consisting of metal powder, is poured into the porous mold. The free liquid in a slurry is absorbed by the mold, tearing the solid layer of material on the surface of the mold. The mold may be vibrated to increase the density of the component. The components are dried and sintered to provide sufficient strength.

07-slip casting-process-powder metallurgy

Extruding:

It is employed to produce components with high density and excellent mechanical properties.

Both hot and cold extrusion processes are used for compacting special materials. In cold extrusion, the powder is mixed with a binder, and the mixture is often compressed into a billet before being extruded. The binder must be removed before or during sintering. In hot extrusion, the powder is compacted into a billet and is then heated to extrusion temperature in a non-oxidizing atmosphere.

04-extrusion-direct-indirect-rod-pipe-process

Gravity Casting:

It is used for making sheets with controlled porosity. The powder is poured on a ceramic tray to form a uniform layer and then sintered for up to 48 hours in ammonia gas at a high temperature. The sheets are then rolled to the desired thickness for a better surface finish. Porous sheets of stainless steel made by this process are used for filters.

09-gravity-casting-metal-mould.jpg

10-indirect-gravity-casting-metal-mould.jpg

Rolling:

It is employed to make continuous strips and rods with controlled porosity and uniform mechanical properties. In this method, the metal powder is fed into two rolls, which compress and interlock the powder particles to form a sheet of sufficient strength. It is then sintered, re-rolled, and heat treated if necessary. Metal powders that can be compacted into strips include copper, brass, bronze, nickel, Monel, and stainless steel.

08-cold-rolling-process-plate-sheet-foil.jpg

Iso-Static Moulding:

It is used to obtain products with uniform density and strength in all directions. Metal powder is placed in an elastic mold (deformable mold) subjected to gas pressure (65 to 650 MPa). After pressing, the compact is removed.

02-cold-isostatic-pressing-compacting.jpg

Explosive Compacting:

It is employed for pressing hard particles. The metal powder is placed in waterproof bags which are immersed in water. It is contained in a cylinder having a wall thickness. Due to the sudden deformation of the change at the end of the cylinder, the pressure in the cylinder increases. The pressure is used to press the metal powders into forming green compacts.

11-explosive-moulding-compacting.jpg

Fiber-metal Processes:

The metal fibers (fine wires of convenient length) are mixed with a liquid slurry and poured over a porous bottom. The liquid is drawn off, leaving a green mat of fiber. The mat, in which the fibers are randomly distributed, is pressed and sintered. The products are mainly used for filters, battery plates, and damping.

12-fibre-metal-processes.jpg

Applications of powder compaction

Powder metallurgy components are utilized in a wide range of final products, including:

  • Hardware
  • Connecting rods, chain sprockets, and cams are examples of automotive components.
  • Washing machines
  • High-speed tool steels and carbides are examples of powerful tools.
  • Postage metres and copiers
  • Hunting knives
  • Hydraulic components
  • X-ray barrier
  • Components for drilling wells in the oil and gas industry.

Advantages of powder compaction

  • Efficient material consumption.
  • Close dimensional tolerances are possible; a near-net form is conceivable.
  • Excellent surface polish
  • Complex forms can be manufactured.
  • For example, tungsten wires for incandescent lights are produced from rugged materials that are difficult to process.
  • Environmentally friendly and energy-saving
  • Suitable for the manufacturing of moderate to large volumes of components,
  • Powders with a consistent chemical makeup
  • Alloy metals are not typically easy to alloy.
  • Produces a wide range of alloys with various characteristics.
  • Make homogenous, fine-grained structures.
  • Create complex shapes
  • Produce parts with a high level of polish.
  • We have a large selection of materials.
  • It is possible to create parts with regulated porosity.
  • Cost-effectiveness
  • The flexibility of shape and substance
  • Variability in application
  • Uniformity to a degree

Disadvantages of powder compaction

  • Powder material and tooling are both expensive.
  • Parts that are not as strong as those that are manufactured in wrought iron.
  • The process is less well-known.

FAQ’s

What is the significance of material characterization in powder metallurgy?

The underlying microstructure of a powder metallurgy component significantly impacts its qualities. This, in turn, depends on the quality of the raw materials utilized and the process circumstances. Materials are the most significant source of variation in a fixed process. Material qualities that are inconsistent will result in inconsistent final component properties. Manufacturers have to be capable of assessing and improving their processes. They can use their material properties to create consistent, high-quality components using powder metallurgy.

What are the essential qualities of powder metallurgy?

Particle size and shape are significant characteristics in powder metallurgy because they influence crucial features such as powder flow, powder packing, and interparticle friction. These qualities must be tuned to obtain the requisite strength and density in the green body and sintered components. Chemical composition is also critical since the metal powder must match the alloy composition of the required material, which might alter the completed part’s qualities.

The crystallographic structure affects the mechanical characteristics of both the metal powder and the finished component. As a result, the powder manufacturing process and the metal powder compacting parts manufacturing procedures must be designed to generate materials with the appropriate phase composition, grain size, and texture for the application while reducing residual stresses.

Finally, the feedstock’s rheological qualities are crucial for operations like metal injection molding, where the feedstock material is a powder dispersion in a polymer/wax matrix. Particle qualities such as particle size, shape, and concentration and binder factors such as molecular weight and molecular structure impact these properties. As a result, manufacturers must be able to manage these features.

Characteristics of Metal Powder compaction in various methods of compaction

Is there a difference between the requirements for punch and die materials in powder metallurgy and forging and extrusion? Explain.

Abrasive wear resistance is a crucial element in die and punches material selection in operations like forging, extrusion, and powder metallurgy compaction. As a result, the dies for these processes are made of similar, if not identical, materials. Isostatic pressing, for example, uses flexible molds that are not employed in forging or extrusion.

Should green compacts be heated slowly or quickly to sintering temperature? Explain your decision.

Rapid heating can produce high thermal stresses in the sintered component, leading to deformation or breaking. Nevertheless, it can shorten cycle durations. Slow heating provides the advantage of allowing for more uniform heating and dispersion.

When particles are compacted, why do they have different densities? What are the methods for decreasing it?

The primary causes of density fluctuation in powder compacting are mechanical locking and friction among the particles, which results in pressure changes based on the distance between the punch and the container walls. Double-acting presses, decreasing the frictional resistance of the punch and die surfaces, and adding lubricants that minimize inter-particle friction among the powders can all help to reduce variance.

Explain why powder-injection molding is a crucial process.

Because of its flexibility and cost-effectiveness, powder injection molding has become popular. Powder metals combined with a polymer or wax can be used to create complex forms at high manufacturing rates. The pieces can also be made with a high density in a net or near-net configuration.

In conclusion, metal powder compaction is a process that can be used to create various shapes and sizes out of metal powder. This process is often used in the manufacturing and engineering industries to create parts for machines or products.

If you found this blog post informative, please like and comment below!

Sintering in Powder Metallurgy | Green Compact | Diffusing

What is sintering in powder metallurgy process?

The operation of heating the green compact at high temperature in a controlled atmosphere (Reducing atmosphere which protects oxidation of metal powders). The Sintering increases the bond between the particles and therefore strengthens a powder metal compact. Sintering temperature and time of sintering depends on the type of powders and the strength required in a final product. The Sintering temperatures usually 0.6 to 0.8 times the melting point of powders.